Low Smoke Commscope Zero Halogen Fiber Optic Cable- Low Smoke Zero Halogen Fiber Optic Distribution Cable- Commscope Premisis Fiber Optic Cable- Distribution Cable- Fiber Optic Distribution Cables- Low Smoke Halogen Fiber Cable-Low Smoke Zipcord Fiber Optic Cable
ATS carries Low Smoke Commscope Zero Halogen Fiber Optic Cable, Low Smoke Zero Halogen Fiber Optic Distribution Cable, CommScope® LazrSPEED® multimode plenum, riser and low smoke zero halogen cables are the next generation fiber for LAN building applications. With superior laser bandwidth, LazrSPEED cable can support 10 Gb/s and 1 Gb/s serial applications. LazrSPEED fiber supports legacy multimode applications for backward compatibility with existing equipment. Designed for in-building applications, LazrSPEED fiber provides the most cost effective system solution for 10 Gb/s networking.
Made with flexible, low smoke, flame retardant material. LazrSPEED cable is ideal for all building or campus backbone fiber-to-the-desk or workstation applications to carry image, data or voice signals. Cables may be pulled from the telecommunications room through plenum air handling areas, either in overhead dropped ceilings or under (type DP) raised floors. They can be routed all the way to the desktop or pulled from the room back through an open shaft to the main distribution frame/rack in a computer room. Suited for zone wiring and all other premises structured wiring, LazrSPEED cables may be used in fiber to the workstation applications. LazrSPEED fiber is the perfect choice for installations because it has been designed to support the vast majority of in building distance requirements.
Plenum (OFNP), Riser (OFNR), Low Smoke Zero Halogen (OFNR-LS) cables for use in all applications
Distinctive aqua color-coding for easy identification
No special installation required; uses familiar multimode termination procedures
Cuts costs by eliminating the need for costly single-mode or multi-channel electronics
All LazrSPEED fibers are Differential Mode Delay (DMD) tested
N-002-DS-5L-FSUAQ -Low Smoke Zero Halogen Riser Distribution Cable, 2 fiber single-unit
Low Smoke Zero Halogen Riser Distribution Cable, 2 fiber single-unit
American Tech
Supply carries distribution fiber optic cable along with low smoke zero halogen fiber optic cable and zero halogen fiber optic cable. ATS is a telecommunications based national stocking distributor of singlemode fiber optic cable and multimode fiber optic cables ranging from 2 fiber to 264 576 to 744 up to 864 for FTTX applications Our 744 count fiber to 864 count fiber strand to our 264 to 576 count fibers are mostly special order. Please call for lead times. We provide fiber cables from over 15 different manufacturers including Draka, OFS, Belden, AFL , Optical Cable and many more. Our warehouses located on both coasts allow for fast and reliable shipping of fiber optic cables throughout the USA and we also export all over the world. We have almost every type of fiber optic cable made for immediate or for special orders - the fastest turnaround in the industry. We have custom fiber jumpers and fiber assemblies at the USA's best prices as well. Call us today at (866) FIBER-21.
Fiber Optic Cable refers to the complete assembly of fibers, strength members and jacket. Fiber optic cables come in lots of different types, depending on the number of fibers and how and where it will be installed. Choose cable carefully as the choice will affect how easy it is to install, splice or terminate and, most important, what it will cost! We offer COMPLIMENTARY ENGINEERING at no cost for simple questions regarding fiber. For designing fiber networks or FTTH developments please ask for one of our engineers or visit one of our partners at ATEK for further assistance.
Description: Please call (866) 342-372Low Smoke Zero Halogen Reinforced Fiber Cable Specifications For Availability- ATS reserves the right to change or alter any fiber cable part number based on market availability. ATS is not responsible for product being discontinued
Description: Please call (866) 342-3721 For Availability- ATS reserves the right to change or alter any fiber cable part number based on market availability. ATS is not responsible for product being discontinued
ST
fiber optic patch cable
FC fiber cable assemblies
SC fiber cable assemblies
Biconic
fiber assemblies
FDDI cables
SMA
fiber assemblies
Escon fiber optics
MTRJ fiber patch cords
MU fiberoptics
FA
fibre cables
D4
optical fiber assemblies
E2000 fiber cable assemlbies
MTP optical fiber
MPO
optical fiber assemblies
Opti Jack fibre optics
Multimode 62.5/125 micron Duplex Fiber Optic Cable Assemblies
Multimode 50/125
micron Duplex Fiber Assemblies
Single-Mode 9/125 micron Duplex Fiber Patch
cords and Jumpers
Single-Mode Simplex Fiber Optic Cable Assemblies
Fiber
Optic Connectors
Fiber Optic Adapters
Bulk Fiber Optic Cable
Fiber
Optic Cables /Fiber Jumpers
Duplex MTRJ-MTRJ Fiber Optic Cable
Duplex
MTRJ-SC Fiber Optic Cable
Duplex MTRJ-ST Fiber Optic Cable
Multimode Duplex
SC-SC Fiber Optic Cable
Multimode Duplex ST-SC Fiber Optic Cable
Multimode
Duplex ST-ST Fiber Optic Cable
Multimode Duplex LC-ST Fiber Optic Cable
Multimode Duplex LC-LC Fiber Optic Cable
Multimode Duplex LC-MTRJ Fiber Optic
Cable
Multimode Duplex LC-SC Fiber Optic Cable
Singlemode Duplex SC-SC
Fiber Optic Cable
Singlemode Duplex ST-SC Fiber Optic Cable
Singlemode
Duplex ST-ST Fiber Optic Cable Assemblies Connectors
Description Part Number
ST -ST multi-mode, duplex PC ST/STD-XXX
ST -ST single
mode, duplex PC ST/STSD-XXX
ST -SC mm, duplex PC ST/SCD-XXX
ST-SC sm, duplex
PC ST/SCSD-XXX
SC-SC mm, duplex PC SC/SCD-XXX
SC-SC sm , duplex PC SC/SCSD-XXX
ST-LC
mm, duplex PC ST/LCD-XXX
ST-LC sm, duplex PC ST/LCSD-XXX
SC-LC mm, duplex
PC SC/LCD-XXX
SC-LC sm, duplex PC SC/LCSD-XXX
LC-LC mm, duplex PC LC/LCD-XXX
LC-LC
sm, duplex PC LC/LCSD-XXX
ST-MTRJ mm, duplex PC ST/MTD-XXX
SC-MTRJ mm, duplex
PC SC/MTD-XXX
MTRJ-MTRJ mm, duplex PC MT/MTD-XXX
MTRJ-LC mm, duplex PC MT/LCD-XXXBRIEF
OVER VIEW OF FIBER OPTIC CABLE ADVANTAGES OVER COPPER:
SPEED: Fiber optic networks operate at high speeds - up into the gigabits
BANDWIDTH: large carrying capacity
DISTANCE: Signals can be transmitted
further without needing to be "refreshed" or strengthened.
RESISTANCE: Greater resistance to electromagnetic noise such as radios, motors
or other nearby cables.
MAINTENANCE: Fiber optic cables costs much less
to maintain.
In
recent years it has become apparent that fiber-optics are steadily replacing copper
wire as an appropriate means of communication signal transmission. They span the
long distances between local phone systems as well as providing the backbone for
many network systems. Other system users include cable television services, university
campuses, office buildings, industrial plants, and electric utility companies.A
fiber-optic system is similar to the copper wire system that fiber-optics is replacing.
The difference is that fiber-optics use light pulses to transmit information down
fiber lines instead of using electronic pulses to transmit information down copper
lines. Looking at the components in a fiber-optic chain will give a better understanding
of how the system works in conjunction with wire based systems.At
one end of the system is a transmitter. This is the place of origin for information
coming on to fiber-optic lines. The transmitter accepts coded electronic pulse
information coming from copper wire. It then processes and translates that information
into equivalently coded light pulses. A light-emitting diode (LED) or an injection-laser
diode (ILD) can be used for generating the light pulses. Using a lens, the light
pulses are funneled into the fiber-optic medium where they transmit themselves
down the line.Think
of a fiber cable in terms of very long cardboard roll (from the inside roll of
paper towel) that is coated with a mirror.
If you shine a flashlight in one
you can see light at the far end - even if bent the roll around a corner.Light
pulses move easily down the fiber-optic line because of a principle known as total
internal reflection. "This principle of total internal reflection states
that when the angle of incidence exceeds a critical value, light cannot get out
of the glass; instead, the light bounces back in. When this principle is applied
to the construction of the fiber-optic strand, it is possible to transmit information
down fiber lines in the form of light pulses.
Multimode cable is made of of
glass fibers, with a common diameters in the 50-to-100 micron range for the light
carry component (the most common size is 62.5). POF is a newer plastic-based cable
which promises performance similar to glass cable on very short runs, but at a
lower cost.Multimode
fiber gives you high bandwidth at high speeds over medium distances. Light waves
are dispersed into numerous paths, or modes, as they travel through the cable's
core typically 850 or 1300nm. Typical multimode fiber core diameters are 50, 62.5,
and 100 micrometers. However, in long cable runs (greater than 3000 feet [914.4
ml), multiple paths of light can cause signal distortion at the receiving end,
resulting in an unclear and incomplete data transmission. The use of fiber-optics
was generally not available until 1970 when Corning Glass Works was able to produce
a fiber with a loss of 20 dB/km. It was recognized that optical fiber would be
feasible for telecommunication transmission only if glass could be developed so
pure that attenuation would be 20dB/km or less. That is, 1% of the light would
remain after traveling 1 km. Today's optical fiber attenuation ranges from 0.5dB/km
to 1000dB/km depending on the optical fiber used. Attenuation limits are based
on intended application.The
applications of optical fiber communications have increased at a rapid rate, since
the first commercial installation of a fiber-optic system in 1977. Telephone companies
began early on, replacing their old copper wire systems with optical fiber lines.
Today's telephone companies use optical fiber throughout their system as the backbone
architecture and as the long-distance connection between city phone systems.Cable
television companies have also began integrating fiber-optics into their cable
systems. The trunk lines that connect central offices have generally been replaced
with optical fiber. Some providers have begun experimenting with fiber to the
curb using a fiber/coaxial hybrid. Such a hybrid allows for the integration of
fiber and coaxial at a neighborhood location. This location, called a node, would
provide the optical receiver that converts the light impulses back to electronic
signals. The signals could then be fed to individual homes via coaxial cable.Local
Area Networks (LAN) is a collective group of computers, or computer systems, connected
to each other allowing for shared program software or data bases. Colleges, universities,
office buildings, and industrial plants, just to name a few, all make use of optical
fiber within their LAN systems.
Power
companies are an emerging group that have begun to utilize fiber-optics
in their communication systems. Most power utilities already
have fiber-optic communication systems in use for monitoring
their power grid systems.